I have been using Mallet for some time now. I have also used Weka but preferred Mallet for some reasons. However, since I sometimes tend to use Weka I created a way for me to convert a Mallet InstanceList into Weka ARFF format. This also allowed me to use the classifiers in Weka quite easily.
package ca.uwo.csd.ai.nlp.weka;
import cc.mallet.types.Alphabet;
import cc.mallet.types.FeatureVector;
import cc.mallet.types.Instance;
import cc.mallet.types.InstanceList;
import java.io.IOException;
import java.io.StringReader;
import weka.core.Instances;
/**
* Converts Mallet instanceList to Weka ARFF/Instances
* @author Syeed Ibn Faiz
*/
public class Converter {
/**
* Converts Mallet InstanceList into Weka ARFF format
* @param instances Mallet instances
* @param description a String description required by Weka
* @return ARFF representation of the InstanceList
*/
public static String convert2ARFF(InstanceList instances, String description) {
Alphabet dataAlphabet = instances.getDataAlphabet();
Alphabet targetAlphabet = instances.getTargetAlphabet();
StringBuilder sb = new StringBuilder();
sb.append("@Relation \"").append(description).append("\"\n\n");
int size = dataAlphabet.size();
for (int i = 0; i < size; i++) {
sb.append("@attribute \"").append(dataAlphabet.lookupObject(i).toString().replaceAll("\\s+", "_")).append("_").append(i);
sb.append("\" numeric\n");
}
sb.append("@attribute target {");
for (int i = 0; i < targetAlphabet.size(); i++) {
if (i != 0) sb.append(",");
sb.append(targetAlphabet.lookupObject(i).toString().replace(",", ";"));
}
sb.append("}\n\n@data\n");
for (int i = 0; i < instances.size(); i++) {
Instance instance = instances.get(i);
sb.append("{");
FeatureVector fv = (FeatureVector) instance.getData();
int[] indices = fv.getIndices();
double[] values = fv.getValues();
boolean[] attrFlag = new boolean[size];
double[] attrValue = new double[size];
for (int j = 0; j < indices.length; j++) {
attrFlag[indices[j]] = true;
attrValue[indices[j]] = values[j];
}
for (int j = 0; j < attrFlag.length; j++) {
if (attrFlag[j]) {
//sb.append(j).append(" 1, ");
sb.append(j).append(" ").append(attrValue[j]).append(", ");
}
}
sb.append(attrFlag.length).append(" ").append(instance.getTarget().toString().replace(",", ";"));
sb.append("}\n");
}
return sb.toString();
}
/**
* Converts Mallet InstanceList into Weka Instances
* @param instanceList
* @return
* @throws IOException
*/
public static Instances convert2WekaInstances(InstanceList instanceList) throws IOException {
String arff = convert2ARFF(instanceList, "DESC");
StringReader reader = new StringReader(arff);
Instances instances = new Instances(reader);
instances.setClassIndex(instances.numAttributes() - 1);
return instances;
}
}
It is now quite straight forward to call a classifier in Weka as shown in the following example:
public static void main(String[] args) throws IOException, Exception {
ArrayList<Pipe> pipes = new ArrayList<Pipe>();
pipes.add(new Target2Label());
pipes.add(new CharSequence2TokenSequence());
pipes.add(new TokenSequence2FeatureSequence());
pipes.add(new FeatureSequence2FeatureVector());
SerialPipes pipe = new SerialPipes(pipes);
//prepare training instances
InstanceList trainingInstanceList = new InstanceList(pipe);
trainingInstanceList.addThruPipe(new CsvIterator(new FileReader("webkb-train-stemmed.txt"),
"(.*)\t(.*)", 2, 1, -1));
//prepare test instances
InstanceList testingInstanceList = new InstanceList(pipe);
testingInstanceList.addThruPipe(new CsvIterator(new FileReader("webkb-test-stemmed.txt"),
"(.*)\t(.*)", 2, 1, -1));
//Using a classifier in Mallet
ClassifierTrainer trainer = new NaiveBayesTrainer();
Classifier classifier = trainer.train(trainingInstanceList);
System.out.println("Accuracy[Mallet]: " + classifier.getAccuracy(testingInstanceList));
//Getting Weka Instances
Instances trainingInstances = Converter.convert2WekaInstances(trainingInstanceList);
Instances testingInstances = Converter.convert2WekaInstances(testingInstanceList);
//Using a classifier in Weka
NaiveBayesMultinomial naiveBayesMultinomial = new NaiveBayesMultinomial();
naiveBayesMultinomial.buildClassifier(trainingInstances);
Evaluation evaluation = new Evaluation(testingInstances);
evaluation.evaluateModel(naiveBayesMultinomial, testingInstances);
System.out.println("Accuracy[Weka]: " + evaluation.correct() / testingInstanceList.size());
}
Using the WebKB dataset I got the following output: Accuracy[Mallet]: 0.836676217765043
Accuracy[Weka]: 0.836676217765043